Top-notch molecular research swung into gear at Texas A&M University this week – literally.

A crane lowered a high-field 800 megahertz Nuclear Magnetic Resonance spectrometer through an opening in the roof of a biochemistry and biophysics building last week, putting the university on par with leading U.S. research institutions, according to Dr. Gregory Reinhart, department head.

The German-made instrument, which was flown on a cargo plane accompanied by an engineer and transported to the Texas A&M campus on a special truck, is expected to be fully operational by the first of September

The Nuclear Magnetic Resonance technique, commonly called NMR, is the forerunner of the more widely known MRI. Reinhart explained that an MRI makes images of human tissue for medical diagnostics, but NMR makes images at the molecular level for scientific exploration.

“This is a major step forward in the capability of the university in the general area of structural biology,” said Reinhart, whose department collaborated with Texas AgriLife Research, a part of the Texas A&M System, to obtain the equipment.

 The equipment will benefit researchers from across Texas A&M, officials noted.

“We are excited to partner with Texas A&M University to bring this powerful instrument to campus,” said Dr. Craig Nessler, AgriLife Research director. “It is critical that we find ways to collaboratively provide such state of the art equipment to our scientists to maintain our research competitiveness.”

Structural biology means looking at macromolecules, which consist of hundreds or thousands of atoms and then deducing the way these are built and how they move, Reinhart said. Knowing how the molecules work helps scientists create solutions for a variety of needs.

“Macromolecules are important in disease research as well as for studying all biological problems, from plant growth control to waste management in feedlots,” Reinhart said.

Prior to obtaining the $2.7 million NMR, Texas A&M researchers had access to two 600 megahertz and one 500 megahertz NMRs, he noted. Those will remain operable in the biochemistry department’s new NMR wing, but the new larger magnet will provide faster, more detailed results.