“Several other factors make tannins an important research subject,” said Bean, noting their antioxidant capacity and relevant health benefits, their natural occurrence in some cereal crops, and their role in sorghum production. “Knowledge of tannins in biosynthesis pathways can be used to generate lines that produce high-content tannins in sorghum and other cereals to promote health through their unique nutritional properties.”

This study, like many studies in recent years, benefits from work done several years ago on Arabidopsis, which are small flowering plants related to cabbage and mustard, said Yuye Wu, the first author and K-State research associate of agronomy. “Many genes have been identified in Arabidopsis, through the mutational approach, but there is still much to be learned about the genetic control of tannins in cereal crops.”

“This kind of genetic research in crops, coupled with nutritional and medical research, could open the possibility of producing different levels and combinations of phenolic compounds to promote human health,” Yu said. What the researchers learn about tannins in sorghum will be beneficial to the future study of tannins in other plants, including some fruits, vegetables and a few other grains such as finger millets and barley.

Other researchers involved in the study were Mitch Tuinstra, Purdue University; Ming Li Wang, USDA-ARS, Griffin, Georgia; and Guihua Bai, USDA-ARS and adjunct professor of agronomy at KSU.

The project was supported by USDA National Institute of Food and Agriculture, Department of Energy Plant Feedstock Genomics Program, National Science Foundation Plant Genome Research Program, USDA Agricultural Research Service, and the National Sorghum Checkoff program.