One potato field west of Bushland, Texas, hosts three separate studies, all aimed at helping growers nationwide, even internationally, understand the habits and controls of the potato psyllid.

The potato psyllid is the insect that transmits a bacterium that causes the relatively new disease in potatoes known as zebra chip, according to Dr. Charlie Rush, Texas AgriLife Research plant pathologist.

The team of AgriLife Research scientists and a Texas AgriLife Extension Service specialist is working on potato psyllid control and epidemiology of disease transmission under the Specialty Crop Research Initiative titled, “Management of Zebra Chip to Enhance Profitability and Sustainability of U.S. Potato Production.”

This U.S. Department of Agriculture-National Institute of Food and Agriculture-sponsored initiative is led by Rush, and nationwide has a team of 20 researchers and specialists. More information about the team and their work can be found at: http://zebrachip.tamu.edu/.

At the AgriLife Research farm west of Bushland, Rush is joined by Dr. Jerry Michels, AgriLife Research entomologist, and Dr. Ed Bynum, AgriLife Extension entomologist, who are both looking at different aspects of chemical control on the psyllids.

One focus areas of the zebra chip initiative is management or control of the psyllid vector, Rush said.

“What the producers are definitely interested in is control,” he said.

A large survey that monitors movement of the psyllid is headed up by Dr. John Goolsby with the U.S. Department of Agriculture in Weslaco. Selected fields from the Rio Grande Valley north to the Canadian border are sampled weekly for psyllid infestations and a weekly report is sent out to potato growers.

“Often, producers start spraying according to that report,” Rush said.

The current research by Michels and Bynum is aimed at determining the most effective insecticides, as well as the best decision aids to determine when to start spraying, he said.

While they have already located psyllids in the field, they have not had the bacteria that cause zebra chip disease. Since the bacterial pathogen hasn’t been detected and the number of psyllids may not have reached an economic threshold, producers may be spraying when there is no need, Rush said.

Bynum said his study is aimed at timing treatments based on different action thresholds. This would allow a reduction in the number of potato psyllids and incidence of zebra chip in the tubers, but also minimize chemical application.