Lobell said the bulk of the temperature difference is due to evapotranspiration – the moisture released to the air through the leaves of the plants and the soil.

Most of the land put into sugarcane had previously been converted from natural vegetation to pastureland, said Scott Loarie, a postdoctoral researcher at Carnegie. "If someone has a farm that once was natural vegetation, that transition to pasture and annual crops caused local warming," he said. "So now as the farm is going to sugarcane, by comparison it is cooling temperatures locally."

Their research is described in the current issue of Nature Climate Change.

This local cooling does not necessarily mean that the global climate is cooling as a result. It depends in part on what happens with the agriculture that was displaced by the sugarcane, Loarie said. For example, if cattle used to graze on a tract of land and some Amazon forest is cut down to provide new pasture for them, net carbon emissions will actually increase.

"You might not make any difference as far as cooling the world globally at all; in fact, you might make the world marginally warmer," he said.

"The global implications of these local effects were not a part of this study, and any discussion of mitigating global climate should consider the potential for these land use cascades."

One of the important aspects of the study, Lobell said, is that it demonstrates how satellite data can be used in real time to understand the effects of environmental changes. Most research studying the impact of biofuel use on climate has been done with computer modeling.

"I think the coolest thing about this study is you actually can see these temperature effects happening already," Lobell said. "In terms of the more general point about bio energy, I think it is another good example of why looking only at greenhouse gases is not the full picture."

Another takeaway from the study, Loarie said, is that the temperature findings support the existing rule of thumb that biofuel crops are best located on land that is already used for agriculture. That general guideline stems from the fact that there is less carbon released to the atmosphere by converting land where the existing vegetation contains low amounts of carbon, such as pasture or crops, than by cutting down the dense, carbon-rich forests in the Amazon.

Loarie said that while the study clearly showed that planting sugarcane moves the temperature closer to what it would have been if the natural vegetation had not been removed from the land, that doesn't mean the land is any closer to its natural state in other respects.

"Converting pasture to sugarcane is definitely not ecological restoration," said Chris Field, a professor of biology and of environmental Earth system science, who was involved in the research.

"Still, the direct effect on climate is potentially important enough to play a role in future decisions about land use and land management in large parts of the tropics," he said.

The study was funded by the Stanford University Global Climate and Energy Project.

Greg Asner, a professor, by courtesy, of environmental Earth system science, is a coauthor of the paper. Lobell is also a center fellow at both the Freeman Spogli Institute for International Studies and the Woods Institute for the Environment. Field is also a senior fellow at the Precourt Institute for Energy and at the Woods Institute, and director of the Department of Global Ecology at the Carnegie Institution.